5,191 research outputs found

    ‘An Isle Full of Noises’: The Perception & Influence of Sound in Shakespeare’s The Tempest

    Full text link
    Since the play’s authorship in 1610, actor-managers and directors alike have struggled over staging the opening scene of William Shakespeare’s The Tempest. The physical presence of the ship, the sounds and lighting effects of thunder and lightning, the dialogue of the actors, and the use of music have varied from the early 17th century to the present in an effort to appeal to the audience. The presentation of these elements, especially sound cues and music, prepares audiences to understand the dynamics of Prospero’s powers and transformation as a character. Depending on how sound and stage technologies were implemented in performance, directors have been able to present audiences with a Prospero that is depicted as either more or less of a sympathetic character

    Measuring the spin up of the Accreting Millisecond Pulsar XTE J1751-305

    Full text link
    We perform a timing analysis on RXTE data of the accreting millisecond pulsar XTE J1751-305 observed during the April 2002 outburst. After having corrected for Doppler effects on the pulse phases due to the orbital motion of the source, we performed a timing analysis on the phase delays, which gives, for the first time for this source, an estimate of the average spin frequency derivative = (3.7 +/- 1.0)E-13 Hz/s. We discuss the torque resulting from the spin-up of the neutron star deriving a dynamical estimate of the mass accretion rate and comparing it with the one obtained from X-ray flux. Constraints on the distance to the source are discussed, leading to a lower limit of \sim 6.7 kpc.Comment: 7 pages, 3 figures, Accepted for publication by MNRA

    XMM-Newton detects a relativistically broadened iron line in the spectrum of the ms X-ray pulsar SAX J1808.4-3658

    Full text link
    We report on a 63-ks long XMM-Newton observation of the accreting millisecond pulsar SAX J1808.4-3658 during the latest X-ray outburst which started on September 21st 2008. The pn spectrum shows a highly significant emission line in the energy band where the iron K-alpha line is expected, and which we identify as emission from neutral (or mildly ionized) iron. The line profile appears to be quite broad (more than 1 keV FWHM) and asymmetric; the most probable explanation for this profile is Doppler and relativistic broadening from the inner accretion disc. From a fit with a diskline profile we find an inner radius of the disc of 8.7^(+3.7)_(-2.7) R_g, corresponding to 18.0^(+7.6)_(-5.6) km for a 1.4 Msun neutron star. The disc therefore appears truncated inside the corotation radius (31 km for SAX J1808.4-3658) in agreement with the fact that the source was still showing pulsations during the XMM-Newton observation.Comment: 5 pages, 3 figures, accepted for publication in A&A Letters, typos corrected, references adde

    Discovery of periodic dips in the light curve of GX 13+1: the X-ray orbital ephemeris of the source

    Get PDF
    The bright low-mass X-ray binary (LMXB) GX 13+1 is one of the most peculiar Galactic binary systems. A periodicity of 24.27 d with a formal statistical error of 0.03 d was observed in its power spectrum density obtained with RXTE All Sky Monitor (ASM) data spanning 14 years. Starting from a recent study, indicating GX 13+1 as a possible dipping source candidate, we systematically searched for periodic dips in the X-ray light curves of GX 13+1 from 1996 up to 2013 using RXTE/ASM, and MAXI data to determine for the first time the X-ray orbital ephemeris of GX 13+1. We searched for a periodic signal in the ASM and MAXI light curves, finding a common periodicity of 24.53 d. We folded the 1.3-5 keV and 5-12.1 keV ASM light curves and the 2-4 and 4-10 keV MAXI light curves at the period of 24.53 d finding a periodic dip. To refine the value of the period we used the timing technique dividing the ASM light curve in eight intervals and the MAXI light curve in two intervals, obtaining four and two dip arrival times from the ASM and MAXI light curves, respectively. We improved the X-ray position of GX 13+1 using a recent Chandra observation. The new X-ray position is discrepant by \sim 7\arcsec from the previous one, while it is compatible with the infrared and radio counterpart positions. We detected an X-ray dip, that is totally covered by the Chandra observation, in the light curve of GX 13+1 and showed, a-posteriori, that it is a periodic dip. We obtained seven dip arrival times from ASM, MAXI, and Chandra light curves. We calculated the delays of the detected dip arrival times with respect to the expected times for a 24.52 d periodicity. Fitting the delays with a linear function we find that the orbital period and the epoch of reference of GX 13+1 are 24.5274(2) days and 50,086.79(3) MJD, respectively.(Abridged)Comment: 12 pages, including 16 figures. Accepted for publication in A&

    Timing of the Accreting Millisecond Pulsar XTE J1814-338

    Get PDF
    We present a precise timing analysis of the accreting millisecond pulsar XTE J1814-338 during its 2003 outburst, observed by RXTE. A full orbital solution is given for the first time; Doppler effects induced by the motion of the source in the binary system were corrected, leading to a refined estimate of the orbital period, P_orb=15388.7229(2)s, and of the projected semimajor axis, a sini/c= 390.633(9) lt-ms. We could then investigate the spin behaviour of the accreting compact object during the outburst. We report here a refined value of the spin frequency (nu=314.35610879(1) Hz) and the first estimate of the spin frequency derivative of this source while accreting (nu^dot=(-6.7 +/- 0.7) 10^(-14) Hz/s). This spin down behaviour arises when both the fundamental frequency and the second harmonic are taken into consideration. We discuss this in the context of the interaction between the disc and the quickly rotating magnetosphere, at accretion rates sufficiently low to allow a threading of the accretion disc in regions where the Keplerian velocity is slower than the magnetosphere velocity. We also present indications of a jitter of the pulse phases around the mean trend, which we argue results from movements of the accreting hotspots in response to variations of the accretion rate.Comment: 7 pages, 4 figures, Accepted for publication by MNRA

    Searching for pulsed emission from XTE J0929-314 at high radio frequencies

    Full text link
    The aim of this work is to search for radio signals in the quiescent phase of accreting millisecond X-ray pulsars, in this way giving an ultimate proof of the recycling model, thereby unambiguously establishing that accreting millisecond X-ray pulsars are the progenitors of radio millisecond pulsars. To overcome the possible free-free absorption caused by matter surrounding accreting millisecond X-ray pulsars in their quiescence phase, we performed the observations at high frequencies. Making use of particularly precise orbital and spin parameters obtained from X-ray observations, we carried out a deep search for radio-pulsed emission from the accreting millisecond X-ray pulsar XTE J0929-314 in three steps, correcting for the effect of the dispersion due to the interstellar medium, eliminating the orbital motions effects, and finally folding the time series. No radio pulsation is present in the analyzed data down to a limit of 68 microJy at 6.4 GHz and 26 microJy at 8.5 GHz. We discuss several mechanisms that could prevent the detection, concluding that beaming factor and intrinsic low luminosity are the most likely explanations.Comment: 7 pages, 4 figures. Accepted for publication in Astronomy & Astrophysic

    Chandra X-ray spectroscopy of a clear dip in GX 13+1

    Get PDF
    The source GX 13+1 is a persistent, bright Galactic X-ray binary hosting an accreting neutron star. It shows highly ionized absorption features, with a blueshift of ∼\sim 400 km s−1^{-1} and an outflow-mass rate similar to the accretion rate. Many other X-ray sources exhibit warm absorption features, and they all show periodic dipping behavior at the same time. Recently, a dipping periodicity has also been determined for GX 13+1 using long-term X-ray folded light-curves, leading to a clear identification of one of such periodic dips in an archival Chandra observation. We give the first spectral characterization of the periodic dip of GX 13+1 found in this archival Chandra observation performed in 2010. We used Chandra/HETGS data (1.0-10 keV band) and contemporaneous RXTE/PCA data (3.5-25 keV) to analyze the broadband X-ray spectrum. We adopted different spectral models to describe the continuum emission and used the XSTAR-derived warm absorber component to constrain the highly ionized absorption features. The 1.0-25 keV continuum emission is consistent with a model of soft accretion-disk emission and an optically thick, harder Comptonized component. The dip event, lasting ∼\sim 450 s, is spectrally resolved with an increase in the column density of the neutral absorber, while we do not find significant variations in the column density and ionization parameter of the warm absorber with respect to the out-of-dip spectrum. We argue that the very low dipping duty-cycle with respect to other sources of the same class can be ascribed to its long orbital period and the mostly neutral bulge, that is relatively small compared with the dimensions of the outer disk radius.Comment: 13 pages, 15 figures, accepted for publication in Astronomy and Astrophysic

    The Status of a PA Endangered Bird- the Upland Sandpiper

    Full text link
    The upland sandpiper (Bartramia Longuardia) has experienced a steep population decline in the northeastern U.S. since the mid-20th Century. In Pennsylvania it was found in less than 0.5% of atlas blocks during the Second Atlas of Breeding Birds in Pennsylvania project (2nd PBBA; 2004-09) and breeding was confirmed at only two locations. Due to continued declines and a small population size, the upland sandpiper was listed as PA endangered in 2012. During May 2012 the areas around 15 2nd PBBA upland sandpiper sightings were resurveyed by Gettysburg College students and volunteer birdwatchers. The aim was to establish whether the atlas records related to persisting populations. We used five-minute audio playback at up to 10 locations within 4km of the atlas sightings. A maximum of 19 pairs/calling male upland sandpipers were found across the state in 2012, most of them on or close to reclaimed surface mines. However, locating such a scarce species can be problematic, and it is still not known to what extent the species is under-reported. To help direct future surveys we analyzed data from the 2nd PBBA and the 2012 survey to produce a habitat suitability model for the upland sandpiper in Pennsylvania. We used a GIS framework to determine areas of suitable habitat and then stratified these by proximity to recent (2004-2012) upland sandpiper sightings. We recommend that our suitability model be used to establish a sampling protocol for more thorough statewide upland sandpiper survey every five years, in order that the species’ precarious status can be closely monitored

    A re-analysis of the NuSTAR and XMM-Newton broad-band spectrum of Ser~X-1

    Get PDF
    Context: Ser X-1 is a well studied LMXB which clearly shows a broad iron line. Recently, Miller et al. (2103) have presented broad-band, high quality NuSTAR data of SerX-1.Using relativistically smeared self-consistent reflection models, they find a value of R_in close to 1.0 R_ISCO (corresponding to 6 R_g), and a low inclination angle, less than 10 deg. Aims: The aim of this paper is to probe to what extent the choice of reflection and continuum models (and uncertainties therein) can affect the conclusions about the disk parameters inferred from the reflection component. To this aim we re-analyze all the available public NuSTAR and XMM-Newton. Ser X-1 is a well studied source, its spectrum has been observed by several instruments, and is therefore one of the best sources for this study. Methods: We use slightly different continuum and reflection models with respect to those adopted in literature for this source. In particular we fit the iron line and other reflection features with self-consistent reflection models as reflionx (with a power-law illuminating continuum modified with a high energy cutoff to mimic the shape of the incident Comptonization spectrum) and rfxconv. With these models we fit NuSTAR and XMM-Newton spectra yielding consistent spectral results. Results: Our results are in line with those already found by Miller et al. (2013) but less extreme. In particular, we find the inner disk radius at about 13 R_g and an inclination angle with respect to the line of sight of about 27 deg. We conclude that, while the choice of the reflection model has little impact on the disk parameters, as soon as a self-consistent model is used, the choice of the continuum model can be important in the precise determination of the disk parameters from the reflection component. Hence broad-band X-ray spectra are highly preferable to constrain the continuum and disk parameters.Comment: 13 pages including 8 figures. Accepted for publication in A&
    • …
    corecore